
Page 1

Software Structures for Virtual
Environments

Capps, Darken, Zyda

Naval Postgraduate School

What does VR software
look like?

One Thread, Multiple Threads

Important Subsystems

• Real-Time Rendering - Polygon Culling & Level of
Detail Processing

• Real-Time Collision Detection and Response

• Computational Resource Management

• Interaction Management

Page 2

Conceptual Model

ACTION (RESPONSE)

• INTERACTION TECHNIQUES

• NATURAL LANGUAGE

• VISUAL DISPLAYS

• SPATIAL SOUND

• TACTILE FEEDBACK

• HAPTIC FEEDBACK

DEVICES (OUTPUT)

THE "WHAT" OF THE WORLD

 • SIMULATION

• SCIENTIFIC VISUALIZATION

• AUTONOMOUS AGENTS

VISUALIZATION (STIMULI) SYSTEM ARCHITECTURE

• RENDERING

• COMMUNICATION

• NETWORKING

THE "HOW" OF THE WORLD

DEVICES (INPUT)

• SPEECH

• TRACKING

PERCEPTION COGNITION MOTOR

(INFORMATION PROCESSING MODEL)

System
Components

Page 3

INPUT DEVICE C

INPUT DEVICE B

Simulation System

• POSITION

• ORIENT

• COMMANDS

• SELECTION

INPUT DEVICE A

CONTROL FEEDBACK

Sensory Synthesis

OUTPUT DEVICE C

OUTPUT DEVICE B

• VISUAL

• AUDITORY

• OLFACTORY

• TACTILE

• HAPTIC

OUTPUT DEVICE ASimple I/O Loop

MODELING SYSTEM

• OBJECT GEOMETRY

• OBJECT HIERARCHY

• PHYSICAL PROPERTIES

• MATERIAL PROPERTIES

• ENVIRONMENTAL

CONTROL SYSTEM

• PROCESS USER INTERACTION

• COORDINATE COMMUNICATION

 BETWEEN MULTIPLE NODES

SENSORY SYNTHESIS

• POSITION /

 ORIENTATION

• COMMANDS/

 SELECTION

CONTROL FEEDBACK

 CHARACTERISTICS

• REAL TIME

 - PHYSICAL BASED MODEL

 - AI BASED MODEL

• SCRIPTED

• FREE PLAY INTERACTION

SIMULATION SYSTEM

TRAINING EXERCISES

ACTUAL FIELD / LAB DATA

INPUT DEVICE A

INPUT DEVICE B

INPUT DEVICE C

OUTPUT DEVICE A

OUTPUT DEVICE C

OUTPUT DEVICE B

More Detail ...

Page 4

Single Thread
Networked VE

Inits Read
Input Devs

Compute
State Changes

Read
Network

Compute
State Changes

Comp.
Modeling

Post to
Net

Generate
Picture

Page 5

Real-Time Rendering -
Polygon Culling & LODs

The “Generate New Picture” box on the
previous slide is somewhat misleading.
• It is not that simple unless we have unlimited graphics power.

We usually don’t.

• Most of the time we are trying to solve the Polygon Culling
Problem.

– Use available CPU cycles to cull most of our 3D model
before we send it through the graphics pipeline ...

Hierarchical Data Structures
for Polygon Culling
• The classic reference for this is the 1976 paper by

James Clark “Hierarchical Geometric Models for
Visible Surface Algorithms”.

• The idea in the Clark paper is to build a hierarchical
data structure for the displayable world ...

Page 6

Hierarchical Data Structure for
the Displayable World

World (complete building model):
View volume definition
View point, reference point
Bounding Volume (BV)

Floor 1:
BV Floor 2:

BV
Floor n:
BV

Rm1,1 Rm1,2 Rm 1,3 Rm2,1 Rm2,2 Rm2,3
Rmn,1 Rmn,2 Rmn,3

. . .

Minimal set of polygons

Medium set of polygons

Complete set of polygons

BV BV BV BV BV BV
BV BV BV

Part 1 of the Clark Paper
• We build a data structure that allows us to rapidly

throw away most of the data for the world.

• We test the hierarchical bounding volumes to see if
they are contained or partially contained in the
current orientation of the view volume.

• If they are and are leaves in the tree, we draw them
or continue our traversal.

Page 7

Part 2 of the Clark Paper
• We only send the minimal required description of our

object through the graphics pipeline.

• We use the distance from the viewer to the
BV/object to determine which resolution of our
objects to display, basically the pixel coverage of the
final drawn object.

• This presupposes multiple resolution versions of
each room.

View Volume
• We can decide rather quickly whether our BV is in

the High, Medium or Low resolution sections.

– Transform the BVs with the far clipping plane moved
closer.

– Clip into memory and make the decision (or perform this
test in the CPU, if there are spare cycles).

– We will end up with a list of BVs that should be displayed
and a resolution at which they should be displayed.

Page 8

View Volume
This the view volume
cut into three
regions or “levels of
detail” (LOD). Viewer

Near

Far

High
Res.

Medium
Resolution

Low
Resolution

How do we compute different
LODs for our models?

This depends on the origins of our
models...
• By hand - we do this by hand in our modeling tool,

throwing away small polygons for the Low resolution
versions of our models.

– Some modeling tools will do this semi-
automatically. They give you a cut at it and you
can add polygons back in.

Page 9

How do we compute different
LODs for our models?
• Triangular decimation - a triangular mesh is fitted to

your model and an appropriate algorithm is used to
reduce the total number of triangles in the model.

– There is some very nice work on this by Greg
Turk and Hughe Hoppe and others...

Airey, Rohlf & Brooks Paper
• Precomputation of a

hierarchical data
structure for a
building.

Model is constructed
by the architect.

Display Compiler

Display System

Model
Geometry

Happy with
Design

Real-Time
Display Data
Structures

User inputs for
changing
viewpoint.

Design
Changes

Page 10

Airey, Rohlf & Brooks Paper -
Study of Architectural DBs
• The model is changed much less often than the

viewpoint.

– Means pre-processing the database (display compiler) is
possible.

– We could possibly make changes to the big data structure
as we added new building components.

– Perhaps the real-time data structure is updated in parallel.
During the “think time” of the engineer at the workstation.

Airey, Rohlf & Brooks Paper -
Study of Architectural DBs
• Many buildings have high average depth complexity.

– Any image computed from an interior viewpoint
will have many surfaces covering each pixel.

– Much of the model contributes NOTHING to any
given image.

Page 11

Airey, Rohlf & Brooks Paper -
Study of Architectural DBs
• Most polygons are axial.

– They are parallel to 2 of the coordinate axes.

– Most polygons are rectangles.

Airey, Rohlf & Brooks Paper -
Study of Architectural DBs
• The set of polygons that appears in each view

changes slowly as the viewpoint moves.

– Except when crossing certain thresholds.

� Doors, windows --> portals.

Page 12

Airey, Rohlf & Brooks Paper -
Study of Architectural DBs
• We can possibly have the notion of a “working set” of

bounding volumes.

– Based on a viewpoint.

– Also see this in the Clark paper.

– We could just incrementally add/subtract
branches of our tree based on view point
changes.

Airey, Rohlf & Brooks Paper -
Study of Architectural DBs
• This means that when we organize our data, our

data inside one bounding volume should be co-
located in CPU memory.

– To make best use of the virtual memory system.

Page 13

Portals and Viewpoints ...
• We have the

notion of
viewpoints at
portals being
indicators that we
need to swap in
major new blocks
of data.

Room 1

Room 2 Room 3

x = 1

y = 1

y = 2

v1

v2

v3Blue wall Red wall
A

B

Airey, Rohlf & Brooks Paper -
Study of Architectural DBs
• Large planar surfaces are often structured into

multiple, co-planar levels for modeling purposes,
shading purposes and realism purposes.

– Large walls that cross several rooms might be stored as
multiple polygons of different color.

– Perhaps BV-wise, we could use the larger wall better than
the smaller components.

– Notion of somehow taking advantage of such dividing
planes in building our tree structure.

Page 14

Airey, Rohlf & Brooks Paper -
Study of Architectural DBs
• For viewpoints inside the building, the role of surface

interreflections in shading calculations is very
important for spatial comprehension.

– In the Airey system, there is an adaptive radiosity display
algorithm.

– When the viewpoint is not changing, the better radiosity
view is displayed.

� An adaptive system. Put up more detail when the
system is not moving.

Model Space Subdivision
• UNC builds its data structures for display with a

Display compiler.

– Automatically subdivide their database into cells
based on the union of “potentially visible sets”
(PVS) for any viewpoint in a cell.

– Viewpoint position tells which cells to display

– That cell contains potentially visible information.

Page 15

Model Space Subdivision
• A cell is a room plus any potentially visible polygons,

polygons visible through portals.

• Computing PVSs is a hard problem.

• For any viewpoint, we must display the polygons for
the room plus any possibly visible ones through any
doors/portals.

Binary Space Partitioning
• Airey used a BSP-tree as the data structure for his

building models.

• His paper describes how to automatically choose
dividing planes.

• Use the biggest polygon, the ones with the most
occlusion potential.

Page 16

Binary Space Partitioning

y = 1

x = 1 Room 1

Room 2 Room 3

Viewpoint
Use the equation of a plane
in 3-space to determine which
tree branch to follow.

PVS Description:
Polygons of the room +
polygons visible through portals.

A

B

Room 1

Room 2 Room 3

x = 1

y = 1

y = 2

v1

v2

v3Blue wall Red wall
A

B

Partition Priority for Polygons
• One of the key problems in model space subdivision

is determining which are the best planes for splitting
the geometric database.

• Airey came up with the idea of a “partition priority” for
any polygon.

partition priority
for any polygon
(used to determine
best plane for splitting
the database.)

= 0.5 * occlusion + 0.3 * balance + 0.2 * split

The biggest known
polygons with best
occlusion potential
are weighted the
most.

BSP-tree
balance, i.e.
1/2 polygons
are on each
side of the
dividing
polygon.

Sometimes must
cut polygons by
the dividing plane
(want to minimze
that.)

Page 17

Summary of Model
Subdivision Results

Optimal Number of Polygons
Per Cell?
• The number of polygons per cell is determined by:

– the graphics hardware’s fill capability

– by the CPU capability to compute which cells to
display

Page 18

Papers Useful for
Walkthrough
• (1) 1976 CACM Clark, James H. “Hierarchical

Geometric Models for Visible Surface Algorithms”

• (2) Fuchs “Near-Real-Time Shaded Display of Rigid
Objects” - BSP-tree fundamentals. SIGGRAPH ?

• (3) Brooks - 1986 Workshop on Interactive 3D
Graphics - Early thoughts on walkthroughs.
“Walkthrough - A Dynamic Graphics System for
Simulating Virtual Buildings”

Papers Useful for
Walkthrough
• (4) Notes on the origin of BSP trees.

• (5) Airey, Rohlf & Brooks 1990 Symposium on
Interactive 3D Graphics paper. “Towards Image
Realism with Interactive Update Rates in Complex
Virtual Building Environments”

• (6) Papers by Funkhouser

• (7) Paper by Teller & Sequin (SIGGRAPH 93)

Page 19

Real-Time Collision Detection
& Response

A Short Survey on Collision Detection

It’s explored in the literature of:
• computer graphics

• robotics

• computational geometry

• computer animation

• physically-based modeling

Real-Time Collision Detection
& Response

Numerous approaches:
• geometric reasoning[DK90]

• bounding volume hierarchy [Hub96]

• spatial representation [GASF94, NAT90]

• numerical methods[Cam97, GJK88]

• analytical methods[LM95, Sea93]

Page 20

Real-Time Collision Detection
& Response

However, many of these algorithms do not
satisfy the demanding requirements of
general-purpose collision detection for
networked virtual environments.

Real-Time Collision Detection
& Response

UNC has developed a mix of algorithms and
systems for large interactive environments:

• I-COLLIDE [CLMP95]

• RAPID [GLM96]

• V-COLLIDE [HLC + 97].

Page 21

How it Works
Brute force collision detection:

• O(n2) for convex polyhedron: compare each face on object A
with each face on object B; then test if any point in A is inside
of B or vice-versa.

• We do this process every frame!

A little better: spatial subdivision

• only compare two objects if they are in same region of space

• this isn’t useful for a congested model!

Too slow?
Use axis-aligned bounding volumes:

• Sort in axial directions, and find pairs which overlap in all 3
dimensions

To save time, use spatial coherence: use a
bounding volume big enough to hold the object
at any orientation

• That way a spinning object does not require new calculation

Page 22

Problem children
What about non-convex objects?

• Start with convex objects: divide or convex hull

• If convex versions collide, then must compare non-convex
versions...

• … then we’re back to brute force

Real-Time Collision Detection
& Response

Public domain code is available for ftp at
http://www.cs.unc.edu/~geom

Netherlands research team has similar
system: SOLID

http://www.win.tue.nl/cs/tt/gino/solid/.

Page 23

Real-Time Collision Detection
& Response

References

[Cam97] S. Cameron. Enhancing gjk: Computing minimum
and penetration distance between convex polyhedra.
Proceedings of International Conference on Robotics and
Automation, 1997.

[CLMP95] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi. I-
collide: An interactive and exact collision detection system
for large-scale environments. In Proc. of ACM Interactive 3D
Graphics Conference, pages 189{196, 1995.

Real-Time Collision Detection
& Response

[DK90] D. P. Dobkin and D. G. Kirkpatrick. Determining
the separation of pre-processed polyhedra { A uni �ed
approach. In Proc. 17th Internat. Colloq. Automata Lang.
Program., volume 443 of Lecture Notes Comput. Sci.,
pages 400{413. Springer-Verlag, 1990.

[GASF94] A. Garcia-Alonso, N. Serrano, and J. Flaquer.
Solving the collision detection problem. IEEE Comput.
Graph. Appl., 14:36{43, May 1994.

Page 24

Real-Time Collision Detection
& Response

[GJK88] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi.
A fast procedure for computing the distance between
objects in three-dimensional space. IEEE J. Robotics
and Automation, vol RA-4:193{203, 1988.

[GLM96] S. Gottschalk, M. Lin, and D. Manocha. Obb-
tree: A hierarchical structure for rapid interference
detection. In Proc. of ACM Siggraph'96, pages 171{180,
1996.

Real-Time Collision Detection
& Response

[HLC+97] T. Hudson, M. Lin, J. Cohen, S. Gottschalk,
and D. Manocha. V-collide: Accelerated collision
detection for vrml. In Proc. of VRML Conference, pages
119{125, 1997.

[Hub96] P. M. Hubbard. Approximating polyhedra with
spheres for time-critical collision detection. ACM Trans.
Graph., 15(3):179{210, July 1996.

